マイクロチップレーザーによるレーザーピーンフォーミングの変形特性

光科	鷺坂芳弘
理化学研究所	川崎泰介
分子科学研究	Vincent Yahia
理化学研究所・分子科学研究所	平等拓範
分子科学研究所・大阪大学	佐野雄二

Forming properties of laser peen forming using microchip laser

SAGISAKA Yoshihiro, KAWASAKI Taisuke, TAIRA Takunori, Vincent YAHIA and SANO Yuji

Keywords : bending, microchip laser, laser peen forming, laser induced shock wave キーワード: 板曲げ、マイクロチップレーザー、レーザーピーンフォーミング、レーザー誘起衝撃波

1 はじめに

内閣府 ImPACT「ユビキタス・パワーレーザーによる 安全・安心・長寿社会の実現」にて、サブナノ秒オー ダーのパルス幅を持つ超小型マイクロチップレーザー発 振器が開発された¹⁾。当センターにはその試用プラット フォームが開設され、本レーザーの用途開発が行われ ている。著者らは用途の一つとしてレーザー誘起衝撃 波を利用したレーザーピーンフォーミング(以下LPF) による板曲げ加工を提案した²⁾。しかし、サブナノ秒レー ザーのLPF はこれまで前例がなく、その変形特性を把 握する必要がある。そこで本報では試験片の光軸方向 の位置(デフォーカス量)による変形特性について報 告する。

2 方法

実験には試用プラットフォーム²⁰を用いた。レーザー の仕様を表1に、実験装置の外観を写真1に示す。試 験片は板厚1mmの純アルミニウム板(A1100)を10 mm×50mmにせん断したものである。図1のように試 験片を片持ち固定して水を入れた水槽中に設置し、焦 点距離100mmのレンズで集光した光を、水面を通し て板表面に照射した。板表面はデフォーカス量zだけ 集光点から光源側にずらした。水面の位置は集光点 から35mm上方とした。ステージの走査速度1mm/s

			/
波長	パルス幅	繰返し発	パルスエ
		振周波数	ネルギー
1064 nm	700 ps	10 Hz	<100 mJ

表1 マイクロチップレーザーの仕様)

写真1 実験装置(レーザー照射部)外観

図1 実験方法概略

にて、自由端側から 0.1 mm ずつずらしながら試験片 幅方向への線走査を 41 回行った。LPF の成形原理 は既報³にゆずるが、走査が進むと、衝撃波による塑 性変形が蓄積され、板は照射面を凸とする方向に曲 がっていく(写真2)。変形量として走査後の曲げ角 θ を測定した。

写真2 曲げ加工の例(板厚1 mm)

3 結果および考察

図2にデフォーカス量 *z* とパルスエネルギー *E* に対 する曲げ角 θ の変化を示す。*z* が小さいほど、レーザー 光が絞られて面積あたりの *E* が増大するため、θ は大 きくなると予想された。しかし θ の増大は緩やかであり、 集光点付近では逆に急激に減少した。総じて*z*=6 mm で成形性が最も高い。

図2 パルスエネルギーとデフォーカス量による 曲げ角の変化

 $\bigcirc: E=10 \text{ mJ} \quad \triangle: E=20 \text{ mJ} \quad \bigcirc: E=30 \text{ mJ} \quad \square: E=50 \text{ mJ}$

 θ の急減は、レーザー光が水に吸収される波長であ るため、集光点に近づくと急激に水に吸収されてエネ ルギーを失うためである。集光点付近の領域では θ は zに対して敏感なため成形には不適と考えられる。逆 にzが6mm以上では θ の変化は比較的緩やかで、 E=50 mJでは θ がほとんど変化しないzの領域が 20 mmほど存在する。ここではzがばらついても一定の変 形が得られるので、最初から湾曲した板に加工をする 際などには有用と考えられる。

4 まとめ

マイクロチップレーザーでの LPF では集光点付近で は変形量が急減するが、それより光源側では変形がデ フォーカスに対して鈍感であることが確認できた。

謝辞

本研究は総合科学技術・イノベーション会議が主導 する革新的研究開発推進プログラム(ImPACT)の一 環として実施したものです。

参考文献

- 1) 平等拓範: 100MW に迫る手のひらサイズのマイ クロチップレーザーの開発. 0PTRONICS, 436, 156-161 (2018).
- 2) 鷺坂芳弘他:マイクロチップレーザー試用プ ラットフォームの構築.静岡県工業技術研究所研 究報告,第12号,107-110,(2019).
- 3) 驚坂芳弘: 超短パルスレーザーピーンフォーミングによる薄板のダイレス曲げ.ぷらすとす,1
 (3),180-184 (2018).