悪臭除去効果を有する消臭インジケータ色素の開発

化学材料科 伊藤 彰

Developments of indicator pigment have effect of offensive odor removal

Akira Ito

In previous report, we examine deodorization function and accompanying color changes of natural pigments and we found anthocyanidin compounds showed remarkable effects against amine gases, in these natural pigments. We tried to improve the indicator function with deodorization of the anthocyanidin compounds by introducing various substituents. We found that unsubstituted compound and introducing electron donor group such as amino group into the anthocyanidin resulted in enhanced indicator function.

1. はじめに

近年、居住環境の安全・快適性に関する意識が高まり、トイレ、台所等において発生する悪臭を抑制する効果が住関連製品に求められている。しかし、市販されている消臭剤では、消臭の効果や持続性がわかりづらいという問題を抱える。昨年度までの研究で天然色素を用いてアンモニア等の窒素系悪臭に対する消臭能、消臭時の変色を検討したところ、高い消臭能力を有する色素は数種類発見できたが、色の変化を目視で明確に判別することが困難であった。そこで、本研究では、インジケータ機能の向上のため、昨年度までの研究¹⁾で効果が見られたアントシアニジン骨格を有する色素に注目し、その化合物にアミノ基、ニトロ基等の電子を供与、吸引する置換基を導入したものでインジケータ機能がどう変化するのかを検討した。

2. 実験方法

2. 1 FT-IRによる色素の構造解析

アンモニア反応前後で色素の構造がどのように変化するか検討するため、置換基をもたないアントシアニジン(2-フェニルベンゾピリリウム)をアンモニア添加前後でFT-IRを測定し、チャート比較した。

2. 2 Gaussianを用いた色素の分子軌道計算

アントシアニジンでは、比較的簡便に誘導体の合成ができ、置換基の導入によってアントシアニジン 骨格の電子状態が大きく変化することが知られてい る²⁾。よって、電子供与基、電子吸引基を導入することでどのような発色を示すか、また、FT-IRで推定したアンモニア添加後の構造をGaussianにより分子軌道計算し、添加前後でどのような色の変化を示すかを検討した。

2. 3 色素の合成

Gaussianで計算した色素について、吸収波長に変化のあった化合物の合成を行った。

合成は置換サリチルアルデヒドと置換アセトフェ ノンをギ酸に溶解した後、酸性条件下で縮合し、合成した³⁾。

2. 4 色素の消臭、変色機能の評価

色素25 mgを少量のアセトンに溶かし、それをグラスフィルター(面積 $6 \text{ cm} \times 6 \text{ cm}$)に染み込ませ、乾燥させた。そのグラスフィルターとパーミエータ(GASTEC製、PD-1 B-2)で調製したアンモニアガス(初期濃度:約50 ppm)をテドラーバッグに封入し、封入直後及び1時間後のバッグ内の悪臭ガス濃度を測定した。なお、試料はシャーレの上に置き、試験開始までは蓋をして悪臭ガスと触れさせない様にし、蓋を開けた時点を試験開始とした。また、ブランクとしてグラスフィルターとシャーレをテドラーバッグ内に入れたものを対象とした。

悪臭ガス濃度の測定は、対象ガス用の検知管(GASTEC製)を用いて測定した。

アンモニア試験の消臭率は以下の式より算出した。

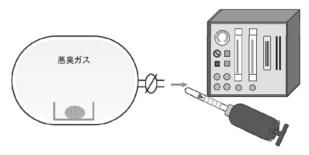


図1 アンモニア消臭試験

消臭率 (%) = $(C_0-C_1)/C_0\times 100$

C。: 初期濃度

C1:1時間後の濃度

変色については、色素をアセトンに溶解し、そこに28%アンモニア水を加え、アンモニア添加前後で吸収波長、吸光度を比較した。

3. 結果と考察

置換基をもたないアントシアニジンについてアンモニア添加前後での構造変化をFT-IRを用いて検討した。アンモニア添加後のチャートでは、添加前には見られなかった $1540 \,\mathrm{cm}^{-1}$ と $3200 \,\mathrm{cm}^{-1}$ にそれぞれ C=N結合、N-H結合と思われるピークが見られることから、アントシアニジンのピリリウム環にアンモニアが求核反応し、ピリリウム環が開いたカルコンのような構造に変化していることが考えられる。

次に化学計算ソフトウェアGaussianを用いてアントシアニジン化合物の構造最適化を行い、分子軌道計算により、アンモニア反応前後の構造について吸収波長を求めた。構造最適化したアントシアニジンでは、ベンゾピリリウム環とベンゼン環の二面角が平行になっており、アントシアニジン骨格全体に共役系が広がっていることがわかった。アンモニア反応前後の構造における吸収極大波長は以下のようになった(表1)。反応後の構造としては、カルコン型のカルボニルがイミンになっていても、吸収波長がほとんど変化しないと考えられるので、代表的なカルコンの構造で計算を行った。

この結果より、無置換とアミノ基等の電子供与基 のみが導入されているものが、アンモニア反応前後 で大きく色の変化が見られると考えられる。これを 参考にして、アントシアニジン色素の合成を行い、

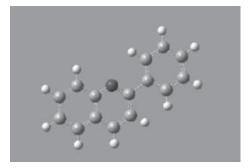
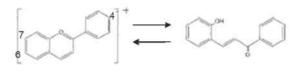



図2 構造最適化したアントシアニジンの構造

アントシアニジン

カルコン

図3 アントシアニジンの構造変化

表 1 Gaussian分子軌道計算結果

置換基	アントシアニジン型吸収波長(nm)	カルコン型吸収波長(nm)
無置換	415	300
7-N(Et) ₂ , 4'-NH ₂	500	300
6-NO ₂ , 4'-NO ₂	410	——(計算不可)
7-N(Et)2,4'-NO ₂	470	430
6-NO ₂ , 4'-NH ₂	460	430

その消臭能力と変色機能について検討した。

表1の5種のアントシアニジン誘導体を合成し、 その消臭試験を行った。ほとんどの色素は高い消臭 能力を有しており、50ppmのアンモニアガスを1 時間でほぼ匂わない程度まで消臭することができた。

変色については、Gaussianでの計算結果に示された通りに無置換、電子供与基のみが導入されたアントシアニジンでは色の変化が大きかった。アンモニア添加後では、吸収波長の変化だけでなく、吸光度の減少したため、色相の変化だけでなく、色の濃さの変化も見られた。無置換では橙から無色、4´-アミノ-ジェチルアミノ体では、紫から黄色に変化し、目視でも明確に変色の様子が確認できた。一方、電子供与基であるニトロ基を導入した化合物では、アンモニア反応前後で吸収波長の変化が乏しく、色の変化は見られなかった。

置換基の違いによる発色に関しては、置換基の種類により、大きく異なり、無置換では橙、電子供与基のみが導入されたものでは紫、電子吸引基のみが

表 2 アンモニア消臭試験 (初期濃度50ppm)

置換基	消臭試験1時間後の アンモニア消臭率(%)
ブランク	26
無置換	100
7-N(Et) ₂ , 4´-NH ₂	90
6-NO ₂ , 4'-NO ₂	86
7-N(Et)2,4^-NO ₂	96
6-NO ₂ , 4´-NH ₂	90

導入されたものでは、黄色となった。主骨格への電子の供受の強さや置換基を導入する部位によって、 吸収波長を容易に変えることが可能であるため、様々 な色の発色ができると考えられる。

4. まとめ

今回、合成した色素について、無置換体と4´-アミノ-7-ジェチルアミノ体では、アンモニアに対しての消臭能力が高く、反応前後での色変化も大きいことから、実用化の可能性を見出すことができた。

参考文献

- 1) 伊藤彰他: 静岡県工業技術研究所研究報告、 No.3 pp16~18 (2010)
- 2) 伊藤冬樹他:信州大学教育学部研究論集、No.2 pp99~108 (2010)
- 3) C.Michaelis and R. Wizinger, Helv. Chim. Acta, 34, 1761 (1951)

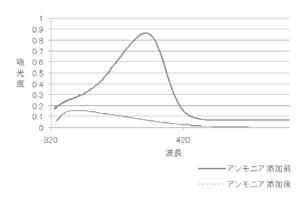


図4 アンモニア添加前後での無置換体のUV-visスペクトル

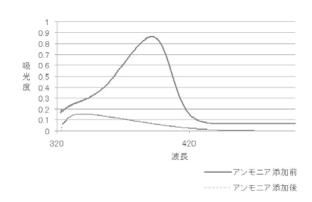


図 5 アンモニア添加前後での7-ジエチルアミノ-4´-ア ミノ体のUV-visスペクトル

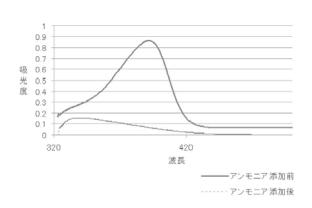


図 6 アンモニア添加前後での6-ニトロ-4´-ニトロ体の UV-visスペクトル