プラスチック射出成形品の異物付着対策

化学材料科 田中翔悟 菅野尚子 渥美博安

The method to avoid adhesion of dust on injection molded plastic products

Shogo TANAKA, Naoko Kanno and Hiroyasu Atsumi

Keywords: plastics, injection molding, dust, failure. キーワード: プラスチック、射出成形、異物、不良対策。

1 はじめに

化学材料科では、プラスチック、ゴム材料を主とした 製品に関する地域の企業からの相談に日々対応しており、相談内容の多くを占めるのが異物の付着に起因するトラブルである。異物の付着は、電気、電子機器部品等では動作不良の原因となり、家電、自動車等デザイン性が要求される成形品では外観不良の原因となる。工場の海外移転が進むなかで、国内で製造されるプラスチック射出成形品は精密、高品質化の要求が強くなっており、従来は問題にならなかった微細な異物が問題となることが増えている。本研究では、相談を受けた県内の樹脂成形・組立工場をモデルとして、既存の設備のままで異物の付着による不良を効率的に防ぐ方策を検討した。

2 方法

問題となった不良は、樹脂射出成形品と透明樹脂 部品の接合界面に異物が挟まり、外観不良となるもの だった(図1)。以下の実験、分析を実施して対策を 検討した。

2.1 成形品表面の異物付着性試験

成形品表面への異物の付着性を可視化するため、 成形品にアルミナ粉を散布後軽く振り落とし、表面に残っ たアルミナ粉の分布を確認した(図2)。

2.2 原料加熱時の発生ガス捕集実験

成形品表面付着物の発生源を特定するため、原料ペレットを成形温度で加熱して、発生したガスをガラス管に捕集して(図3)、射出成形金型付着物、原料ペレットの赤外吸収スペクトルを比較した。

2.3 成形から接合工程中の塵の採取、分析

図4に示した各箇所から採取した塵を観察、分析、 分類し、接合の再現試験を行って不良の原因となる異 物を特定した。

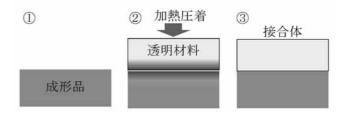


図1 溶着工程のイメージ

図2 使用器材

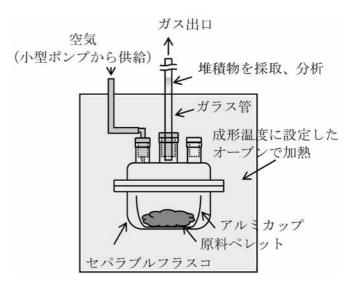
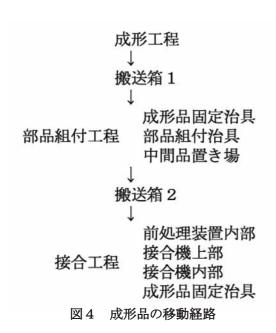



図3 ガス捕集実験装置模式図

3 結果と考察

3.1 成形品表面の異物付着性試験

まだら状にアルミナ粉が付着している様子が観察され(図5)、成形時点で、表面に異物の付着を促す物質が存在することが明らかとなった。

3.2 原料加熱時の発生ガス捕集実験

成形品表面には、射出成形時に溶融樹脂から発生 したガスが金型表面で冷却され、液状となったものが 付着しており、それが異物の付着を促し、除去を困難 にしていることがわかった(図 6)。

3.3 成形~接合工程中の塵の採取、分析

各工程から採取した塵の分析及び再現試験の結果、 不良の原因となる異物は搬送中に箱内部で付着していることがわかった(図7)。

3.4 外観不良の発生メカニズムと対策

成形、搬送時に異物付着の不良が発生することが 分かったことから(図8)、それぞれの原因を除去する 対策を実施した結果、異物による外観不良が対策前の 10分の1以下に減少し、生産性が大幅に向上した。

4 まとめ

成形から部品の組み付け、接合にいたる工程全体 を確認して不良の発生原因を特定し、効率的に対策を とることができた。

協力工場の製造ラインでは異物による外観不良が対 策前の10分の1以下に減少し、生産性が大幅に向上 した。

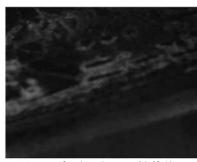


図5 成形品表面の付着状況

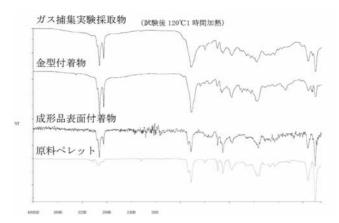


図6 IR測定結果

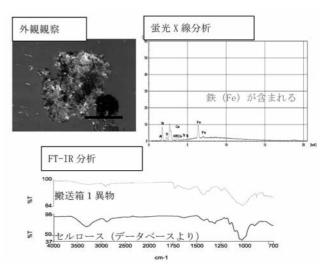


図7 不良を再現した異物の例

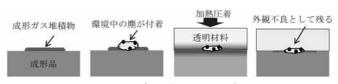


図8 不良発生のメカニズム